Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide.

نویسندگان

  • Walt A de Heer
  • Claire Berger
  • Ming Ruan
  • Mike Sprinkle
  • Xuebin Li
  • Yike Hu
  • Baiqian Zhang
  • John Hankinson
  • Edward Conrad
چکیده

After the pioneering investigations into graphene-based electronics at Georgia Tech, great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an important material for fundamental two-dimensional electron gas physics. It was long known that graphene mono and multilayers grow on SiC crystals at high temperatures in ultrahigh vacuum. At these temperatures, silicon sublimes from the surface and the carbon rich surface layer transforms to graphene. However the quality of the graphene produced in ultrahigh vacuum is poor due to the high sublimation rates at relatively low temperatures. The Georgia Tech team developed growth methods involving encapsulating the SiC crystals in graphite enclosures, thereby sequestering the evaporated silicon and bringing growth process closer to equilibrium. In this confinement controlled sublimation (CCS) process, very high-quality graphene is grown on both polar faces of the SiC crystals. Since 2003, over 50 publications used CCS grown graphene, where it is known as the "furnace grown" graphene. Graphene multilayers grown on the carbon-terminated face of SiC, using the CCS method, were shown to consist of decoupled high mobility graphene layers. The CCS method is now applied on structured silicon carbide surfaces to produce high mobility nano-patterned graphene structures thereby demonstrating that EG is a viable contender for next-generation electronics. Here we present for the first time the CCS method that outperforms other epitaxial graphene production methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic structure of epitaxial graphene grown on the C-face of SiC and its relation to the structure

The interest in graphene stems from its unique band structure that photoemission spectroscopy can directly probe. However, the preparation method can significantly alter graphene’s pristine atomic structure and in turn the photoemission spectroscopy spectra. After a short review of the observed band structure for graphene prepared by various methods, we focus on graphene grown on silicon carbid...

متن کامل

Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nano selective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defective crystals in the heteroepitaxial growth of nitrides, and the high mobility graphene film can readily provide the back low-dissipative electrode in G...

متن کامل

Epitaxial graphene on silicon carbide: Introduction to structured graphene

We present an introduction to the rapidly growing field of epitaxial graphene on silicon carbide, tracing its development from the original proof-of-concept experiments a decade ago to its present, highly evolved state. The potential of epitaxial graphene as a new electronic material is now being recognized. Whether the ultimate promise of graphene-based electronics will ever be realized remain...

متن کامل

Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics

Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon dioxide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze. Traditional model dielectric functions for layered silicon homojunctions, a system with a similar structure to modern tra...

متن کامل

Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates

We are aiming at understanding graphene formation mechanism on different SiC polytypes (6H, 4H and 3C) and orientations with the ultimate goal to fabricate large area graphene (up to 2 inch) with controlled number of mono layers and spatial uniformity. To reach the objectives we are using high-temperature atmospheric pressure sublimation process in an inductively heated furnace. The epitaxial g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 41  شماره 

صفحات  -

تاریخ انتشار 2011